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Do nuclear magnetic resonance (NMR)- ")
based metabolomics improve the
prediction of pregnancy-related disorders?
Findings from a UK birth cohort with
independent validation
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Abstract

Background: Prediction of pregnancy-related disorders is usually done based on established and easily measured
risk factors. Recent advances in metabolomics may provide earlier and more accurate prediction of women at risk
of pregnancy-related disorders.

Methods: We used data collected from women in the Born in Bradford (BiB; n =8212) and UK Pregnancies Better
Eating and Activity Trial (UPBEAT; n=859) studies to create and validate prediction models for pregnancy-related
disorders. These were gestational diabetes mellitus (GDM), hypertensive disorders of pregnancy (HDP), small for
gestational age (SGA), large for gestational age (LGA) and preterm birth (PTB). We used ten-fold cross-validation and
penalised regression to create prediction models. We compared the predictive performance of (1) risk factors
(maternal age, pregnancy smoking, body mass index (BMI), ethnicity and parity) to (2) nuclear magnetic resonance-
derived metabolites (N =156 quantified metabolites, collected at 24-28 weeks gestation) and (3) combined risk
factors and metabolites. The multi-ethnic BiB cohort was used for training and testing the models, with
independent validation conducted in UPBEAT, a multi-ethnic study of obese pregnant women.
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Results: Maternal age, pregnancy smoking, BMI, ethnicity and parity were retained in the combined risk factor and
metabolite models for all outcomes apart from PTB, which did not include maternal age. In addition, 147, 33, 96, 51
and 14 of the 156 metabolite traits were retained in the combined risk factor and metabolite model for GDM, HDP,
SGA, LGA and PTB, respectively. These include cholesterol and triglycerides in very low-density lipoproteins (VLDL)
in the models predicting GDM, HDP, SGA and LGA, and monounsaturated fatty acids (MUFA), ratios of MUFA to
omega 3 fatty acids and total fatty acids, and a ratio of apolipoprotein B to apolipoprotein A-1 (APOA:APOBT1) were
retained predictors for GODM and LGA. In BiB, discrimination for GDM, HDP, LGA and SGA was improved in the
combined risk factors and metabolites models. Risk factor area under the curve (AUC 95% confidence interval (Cl)):
GDM (0.69 (0.64, 0.73)), HDP (0.74 (0.70, 0.78)) and LGA (0.71 (0.66, 0.75)), and SGA (0.59 (0.56, 0.63)). Combined risk
factor and metabolite models AUC 95% (Cl): GDM (0.78 (0.74, 0.81)), HDP (0.76 (0.73, 0.79)) and LGA (0.75 (0.70,
0.79)), and SGA (0.66 (0.63, 0.70)). For GDM, HDP and LGA, but not SGA, calibration was good for a combined risk
factor and metabolite model. Prediction of PTB was poor for all models. Independent validation in UPBEAT at 24—
28 weeks and 15-18 weeks gestation confirmed similar patterns of results, but AUCs were attenuated.

Conclusions: Our results suggest a combined risk factor and metabolite model improves prediction of GDM, HDP
and LGA, and SGA, when compared to risk factors alone. They also highlight the difficulty of predicting PTB, with all
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models performing poorly.
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Background

Around 40% of all pregnancies are complicated by one
or more of gestational diabetes mellitus (GDM), hyper-
tensive disorders of pregnancy (HDP), small or large for
gestational age (SGA, LGA) and preterm birth (PTB).
These pregnancy-related disorders have adverse short-
and long-term consequences for the mother and child
[1-7]. Established risk factors for pregnancy-related dis-
orders include pregnancy smoking, maternal age, body
mass index (BMI), maternal ethnicity and parity [6, 8—
12]. However, a large proportion of disorders occur in
women without any known risk factors. Current identifi-
cation of women who are ‘high-risk’ uses clinical screen-
ing of these risk factors, sometimes in combination with
early pregnancy measures of glucose for GDM [13],
blood pressure for HDP [6], ultrasound for SGA and
LGA [14] and cervical length measurement/fetal fibro-
nectin for PTB [15]. However, whilst glucose measures
in early pregnancy can identify women with undiagnosed
existing diabetes, neither it nor established risk factors
in early pregnancy predict GDM risk accurately [16].
Ultrasound has poor consistency, is prone to human
error and often fails to identify SGA or LGA babies until
very late in pregnancy [17]. Cervical length and fetal fi-
bronectin have improved the prediction of PTB but are
invasive and only predict ‘imminent’ preterm birth in
women where this is suspected [15].

These pregnancy-related disorders often co-occur,
with women with GDM more likely to have pregnancies
complicated by hypertension or pre-eclampsia (PE), and
their offspring being born LGA [2]. Similarly, women
with HDP are more likely to have their offspring born
SGA or preterm [5]. However, most research focuses on

single outcomes. This multimorbidity should be ad-
dressed to see if a common prediction tool, or a tool
with an overlap of variables, can be developed for pre-
dicting global risk of several pregnancy-related disorders.
It may also enable identification of women likely to have
a healthy pregnancy [18-20].

Metabolomics might improve prediction of pregnancy-
related disorders. Metabolite levels are known to change
markedly during pregnancy [21, 22] and associate with
cardio-metabolic  outcomes (known correlates of
pregnancy-related disorders) [18] and with pregnancy-
related disorders in some studies [23]. Most studies ex-
ploring the value of metabolomics in predicting
pregnancy-related disorders have focused on GDM, PE
or SGA. The most notable omics predictor that has been
identified to date is soluble fms-like tyrosine kinase 1
(sFlt-1) and placental growth factor (PIGF) ratio for pre-
dicting PE. sFlt-1:PIGF is an accurate predictor of PE in
both low- and high-risk pregnant women [24]. With re-
spect to metabolite prediction, two studies reported ex-
cellent predictive discrimination for SGA (area under
the curve - AUC > 0.90)—one study which developed a
metabolomic model of five metabolites [25] and another
of 19 metabolites [26]. However, these were based on
small samples of 83 and 8 women, respectively. Simi-
larly, a study reported that a panel of four mass
spectrometry-derived metabolites could predict spontan-
eous PTB with a partial AUC (i.e. an alternative to AUC,
whereby only the regions of ROC space where data are
observed are included) of 12.6 in 105 women [27]. These
studies did not compare their models to the existing risk
factors or undertake external validation. A systematic re-
view of metabolomic prediction of SGA identified 15
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studies [28]. Of these, only three were designed for pre-
diction purposes and provided any metric of prediction.
Two of these three had sample sizes of 80 and 83
women. None of them sought external validation. For
GDM, nuclear magnetic resonance (NMR)-derived me-
tabolites have been found to distinguish between women
who did and did not go on to develop GDM, when
looked at in early pregnancy. However, discrimination
did not improve when added to a risk prediction model
of candidate biomarkers [29].

A recent collaboration between the Pregnancy Out-
comes Prediction study (POPs) and the Born in Bradford
(BiB) cohort (the latter used as external validation) using
mass spectrometry metabolomics (>1100 semi-
quantified untargeted metabolites) has shown that 4-
hydroxyglutamate improves prediction of PE over risk
factors alone [30]. The same collaboration found that
sFIt-1:PIGF and a ratio of combining four metabolites
(1-(1-enyl-stearoyl)-2-oleoyl-GPC,  1,5-anhydroglucitol,
5a-androstan-3a,17a-diol disulfate and N1,N12-diacetyl-
spermine) is a better predictor of fetal growth restriction
than sFlt-1:PIGF combined with risk factors [31].

In this study, our aim was to see whether NMR-
derived metabolites could improve the prediction of
pregnancy-related disorders, over and above established
risk factors (pregnancy smoking, maternal age, BMI, ma-
ternal ethnicity and parity). We focused on the predic-
tion of five common pregnancy-related disorders: GDM,
HDP, SGA, LGA and PTB. We used two samples, (1)
women in the BiB cohort, used for training and testing
the prediction models, and (2) obese pregnant women
(BMI > 30 kg/m?) in the UPBEAT study, used for exter-
nal validation of the prediction models.

Methods

Participants

We used data from the BiB study, a population-based
prospective birth cohort that recruited 12,453 women
who had 13,776 pregnancies. Full details of the study
methodology were reported previously [32]. In brief,
most women were recruited at their oral glucose toler-
ance test (OGTT) at approximately 26—28 weeks gesta-
tion, which was offered to all women booked for delivery
at Bradford Royal Infirmary at the time of recruitment.
Eligible women had an expected delivery between March
2007 and December 2010. Ethical approval for the study
was granted by the Bradford National Health Service Re-
search Ethics Committee (ref 06/Q1202/48). The UP-
BEAT study was a multicentre randomised control trial
(RCT) which recruited 1555 obese pregnant women
(BMI > 30 kg/m?) between 15 and 18 + 6 weeks gestation,
at eight centres across the UK [33]. UPBEAT is regis-
tered with Current Controlled Trials (ISRC
TN89971375), and approvals were obtained from the
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UK research ethics committee (ref 09/H0802/5). Local
research and development departments in participating
centres approved the participation of their respective
centres. All women in both studies provided written in-
formed consent. Figure 1 illustrates the flow of partici-
pants. To be eligible for inclusion in the analysis, all
women had to have a fasting pregnancy serum sample
(used for NMR metabolome profiling) and information
on all established risk factor predictors and all
pregnancy-related disorders. This resulted in 8212 BiB
women and 859 UPBEAT women being included. The
participant characteristics are available in Table 1. All
pregnancies were singleton pregnancies. In UPBEAT,
this was by design, and in BiB, all the women with mul-
tiple pregnancies had some form of missing data and
were not eligible for inclusion in the analysis. Here, we
used UPBEAT as a cohort study, including both arms of
the trial combined and adjusting for which arm they
were allocated to. UPBEAT was an RCT looking at the
effect of a tailored lifestyle intervention aimed at im-
proving diet and physical activity [33]. The UPBEAT
intervention did not influence the primary outcome of
GDM or any of the pregnancy-related disorders explored
here [34]. It did influence the change in several lipids,
fatty acids and some amino acids from the NMR plat-
form used here [34].

Metabolomic profiling

In both studies, comprehensive metabolomic profiling
was performed using high-throughput targeted NMR
platform (Nightingale Health) (Helsinki, Finland) run ei-
ther at the University of Bristol (BiB) or Nightingale
Health (under its previous name of Brainshake) (UP-
BEAT) (https://nightingalehealth.com/about/technol-
ogy). Of the 13,776 pregnancies in the BiB cohort, 11,
476 pregnancies had a fasting serum sample taken at a
single time point, between 24 and 28 weeks gestation,
which was used for NMR profiling. In UPBEAT, NMR
profiling was conducted at three time points during
pregnancy 15-18 + 6 weeks, 27-28 + 6 weeks and 34—36
weeks gestation [33]. We used the 27-28 + 6-week time
point for our main analyses because this matched the
gestational age at which BiB samples were taken for
NMR profiling, and as in BiB, these were fasting sam-
ples. The NMR platform quantified 156 metabolic traits
common to both studies. The targeted metabolic traits
measured by the platform represent a broad molecular
signature of systemic metabolism including routine
lipids, lipoprotein subclass profiling, fatty acid compos-
ition and several low-molecular metabolites, including
amino acids, ketone bodies and gluconeogenesis-related
metabolites, mostly in molar concentration units. A full
list of all the traits profiled from women in both studies
is provided in Additional file 1: Table S1. The NMR
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Fig. 1 The flow of participants eligible for this study. Data preparation: flow of participants (above) in the Born in Bradford (BiB) cohort (top left)
and UK Pregnancies Better Eating and Activity Trial (UPBEAT) randomised control trial (RCT) (top right) to generate the final sample for analysis.

Model overview: sample split for model selection (below). BMI, body mass index; GDM, gestational diabetes mellitus; HDP, hypertensive disorder
of pregnancy; SGA, small for gestational age; LGA, large for gestational age; PTB, preterm birth

— { Model overview }

| UPBEAT |

platform has been applied in various large-scale epi-
demiological studies, with detailed protocol and quality
control information being previously published [35, 36].

Maternal pregnancy measurements

For all outcomes, we compared the predictive ability of
the metabolomic measures in relation to a set of com-
mon predictors that are routinely used in antenatal care
to risk stratify women: maternal age, early pregnancy/re-
cruitment BMI, parity, ethnicity and smoking during
pregnancy. This information was collected during re-
cruitment or extracted from clinical records in both
studies. In both studies, data on parity were extracted
from the first antenatal clinic records (around 12 weeks
of gestation) and categorised as having experienced one
or more previous pregnancy > 24 weeks gestation or no
previous pregnancy. Ethnicity was self-reported or ob-
tained from primary care medical records and was cate-
gorised using the UK Office of National Statistics
criteria: (1) White European (“White British’ or “White
European’), (2) South Asian (‘Pakistani’, ‘Indian’ or ‘Ban-
gladeshi’), (3) Caribbean or African (‘Afro-Caribbean’ or
‘African’) or (4) others. Information on maternal age and
smoking was obtained at recruitment (24—28 weeks ges-
tation in BiB and 15-18 + 6 weeks in UPBEAT) via a

researcher interview. Smoking was dichotomised as any
smoking during pregnancy. In BiB, weight was extracted
from the first antenatal clinic (~ 12 weeks) and height
measured at recruitment. In UPBEAT, weight and height
were measured at recruitment (15-18 + 6 weeks).

We examined the predictive discrimination for five
pregnancy-related disorders: GDM, HDP, SGA, LGA
and PTB. In BiB, all blood pressure measures and pro-
teinuria measurements taken at any time during preg-
nancy were extracted from medical records [1]. In
UPBEAT, these measures were taken at the participating
centres and the diagnoses reported in the main centre.
In both studies, gestational hypertension was defined as
a new onset of elevated blood pressure (systolic blood
pressure > 140 mmHg or greater and/or diastolic blood
pressure > 90 mmHg or greater) after 20 weeks of gesta-
tion on two or more occasions. PE was defined as > 1 or
greater ‘+” on the reagent strip reading (equivalent to 30
mg/100 mL/mmol) or greater > 30 mg/mmol or greater
on spot urine protein/creatinine ratio. We a priori de-
cided that there were too few cases in BiB to examine
the prediction of PE separately from gestational hyper-
tension, so we combined these to generate the ‘hyperten-
sive disorder of pregnancy’ variable used in this study.
As the criteria for HDP require at least two high blood
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Table 1 The characteristics of the women in BiB and UPBEAT
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Characteristic

Born in Bradford, n=8212

UPBEAT, n=859

Age, mean (SD)
Body mass index, mean (SD)
Smoking in pregnancy, n (%)
Nulliparous, n (%)
Ethnicity, n (%)

White European

South Asian

Caribbean/African (Black)

Others
Gestational diabetes WHO, n (%)*
Gestational diabetes IADSPG, n (%)°
Hypertensive disorder of pregnancy, n (%)
Small for gestational age, n (%)
Large for gestational age, n (%)
Preterm birth, n (%)°

Spontaneous preterm birth, n (%)

27 (5.63)

30 (547)

26.14 (5.73) 36.37 (4.98)
1420 (17.3) 133 (155)
3382 (412) 396 (46.1)
3629 (44.2) 573 (66.7)
4085 (49.7) 51 (59)
152 (1.9) 164 (19.1)
346 (4.2) 71(83)
666 (8.1) 90 (10.5)
/ 249 (29)
803 (9.8) 79 (9.2)
1139 (139) 59 (6.9)
617 (7.5) 102 (119)
430 (5.2) 39 (4.5)
260 (3.2) 15 (1.6)

Data are expressed as mean (SD) or n (%) as appropriate. Data were 100% complete. Maternal age and weight/height (used to calculate body mass index (BMI))
were measured at recruitment. Smoking was defined as any smoking during pregnancy. Parity was defined as this pregnancy being their first child (nulliparous) or

having previously given birth (multiparous). Ethnicity was based on self-report

“Gestational diabetes was diagnosed in the Born in Bradford according to the modified World Health Organization (WHO) criteria operating at the time of

the study

PIn UPBEAT, gestational diabetes was defined according to the guidelines recommended by the International Association of Diabetes and Pregnancy Study
Groups (IADSPG). We conducted a sensitivity analysis using the WHO criteria in UPBEAT to check the differences were not due to different GDM criteria
“Preterm birth includes spontaneous and iatrogenic preterm birth (birth < 37 weeks gestation)

pressure measurements after 20 weeks gestation and the
fasting blood samples that were used for NMR metabol-
ite analyses were taken at 26—28 weeks, it is possible
some women will have met the criteria for HDP before
metabolite assessment. We explored whether the inclu-
sion of these women influenced our main results in a
sensitivity analysis in BiB by excluding any women that
we defined as a HDP case before metabolite analyses
(see Sensitivity analysis). All women in BiB and UPBEAT
were offered a 75-g OGTT at 27-28 weeks of gestation.
In BiB, fasting and 2 h post-load samples were analysed;
in UPBEAT, fasting, 1 h and 2h glucose were analysed.
In BiB, GDM was defined according to the modified
World Health Organization (WHO) criteria operating at
the time of the study (fasting glucose > 6.1 mmol/L or 2
h post-load glucose >7.8 mmol/L%). All the GDM cases
in BiB were diagnosed at the same time as the NMR
samples were taken at the OGTT. Women with pre-
existing type 1 or type 2 diabetes were not invited to the
OGTT and instead were managed by an endocrinologist
throughout the pregnancy. Thus, none of the women
with NMR samples was known to have diabetes at the
time of blood sampling. In UPBEAT, GDM was defined
according to the guidelines recommended by the Inter-
national Association of Diabetes and Pregnancy Study
Groups (IADPSG) (fasting glucose >5.1 mmol/L, 1 h

glucose >10.0 mmol/L or higher, 2h venous glucose of
> 8.5 mmol/L) [37]. All GDM cases in UPBEAT were
also diagnosed at the same time as the NMR samples
used in this study were taken (at the OGTT), and
women with pre-existing type 1 or type 2 diabetes were
excluded from the study. In both studies, the UK WHO
fetal growth charts were used as the external standard
for generating gestational age- and sex-standardised
birthweight percentiles. SGA was defined as < 10th per-
centile and LGA as >90th percentile. In both studies,
PTB was defined as delivery before 37 completed weeks.

Statistical analysis

General approach We developed three prediction
models for each pregnancy-related disorder: (i) estab-
lished risk factors (maternal age, early pregnancy/re-
cruitment BMI, parity, ethnicity and smoking during
pregnancy), (i) NMR metabolites (156 metabolite traits)
and (iii) combined risk factor and metabolomics predic-
tors. Glucose was excluded from the metabolite predic-
tion models for GDM because the samples had been
taken at the OGTT and used to diagnose GDM. All
three models were developed in a random subset of 75%
of BiB (training set), and discrimination and calibration
were assessed in the remaining 25% of BiB (testing set).
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External validation in UPBEAT was undertaken by asses-
sing the performance of the models developed in the BiB
training subset.

Having developed models for each outcome separately,
we explored the extent to which these were consistent
across outcomes based on the variables included in BiB.
We also explored discrimination of models developed
for one outcome with other outcomes (details in the
‘Sensitivity analysis’ section). This was done to assess the
potential of having just one or a small number of models
to predict all (or several) outcomes.

Model selection We performed ten-fold cross-
validation and penalised regression using the caret pack-
age in R version 3.5.1 [38]. To construct a model in the
training subset using elastic net, an optimal lambda par-
ameter must first be selected. This is done by applying
ten-fold cross-validation to the training subset with a
variety of lambda values. The lambda with the best
cross-validated performance is then used to apply the
elastic net to the training set to obtain a final predictive
model. The performance of this model is internally vali-
dated by applying it to the testing subset. This process is
more robust than doing just one (training and testing)
analysis [39]. Penalised regression is a method for select-
ing which variables remain in the prediction model; vari-
ables whose coefficients are closer to the null are
penalised (shrunk to zero) [40-42]. We used optimal
values of alpha and lambda (weights used in penalising)
that minimise residual variance and hence maximise
prediction. These cross-validation analyses were under-
taken in a randomly selected 75% subset of the BiB co-
hort, and then internal validation was performed on the
remaining 25%.

External validation We were unable to identify an inde-
pendent study with relevant metabolomic data in a general
population of pregnant women for external validation. We
therefore undertook external validation in an available
population of obese pregnant women (UPBEAT).

Assessing model discrimination and calibration for
the prediction of pregnancy outcomes We assessed
model discrimination using AUC, ranging from no dis-
criminative ability (0.5) to perfect discriminative ability
(1). We assessed calibration (the extent to which our
model predicted the probability of outcomes matched
observed risk) using calibration slopes.

Sensitivity analysis To explore whether the different
definition of GDM in BiB and UPBEAT influenced the
results, we estimated the AUC for our GDM model
using the same OGTT criteria as those applied to BiB.
We used the individual glucose measurements from the
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women in the UPBEAT study to define as GDM using
the criteria (fasting glucose >6.1 mmol/L or 2h post-
load glucose > 7.8 mmol/L).

As our external validation sample was only in obese
pregnant women, we were concerned that any failure to
validate might be due to the differences in BMI distribu-
tion between BiB and UPBEAT. To explore this, we
compared the association of BMI with the five
pregnancy-related disorders in (1) BiB, (2) women in BiB
with a BMI >30kg/m* and (3) UPBEAT (where all
women had BMI > 30 kg/m?). This enabled us to deter-
mine whether BMI relates differently to the outcome
when only obese women are included.

To evaluate whether we could use one model to predict
more than one pregnancy-related disorder, we estimated
the AUC for the other outcomes using the models trained
and tested in BiB that had an AUC = 0.6 for their specific
outcome (e.g. we estimated the AUC for predicting HDP,
SGA and LGA using the GDM models).

We repeated all analyses in BiB and UPBEAT for ‘any’
pregnancy-related disorder (i.e. comparing those with
any GDM, HDP, SGA, LGA or PTB to those with none).

Some of the women potentially met the diagnostic cri-
teria for HDP before blood sampling for the metabolo-
mic analyses. Based on previous research, we believe this
to be a small number [1]. To explore whether including
these women in our main analyses influenced our find-
ings, we identified and removed women meeting the
HDP criteria prior to metabolomic analyses.

In the main analyses, we used the 27-28 + 6-week UP-
BEAT time point for the validation to match the timing of
our discovery sample. In the sensitivity analyses, we ex-
plored the correlations of the 27-28 + 6-week measures
with those undertaken in UPBEAT using the earlier time
point (15-18 + 6 weeks gestation) of metabolite measure-
ments and repeated all UPBEAT validation analyses. There
were several reasons for this: (i) the later measures in UP-
BEAT were post-randomisation and could have been influ-
enced by the intervention; (i) the earlier measures were
exploring prediction with all outcomes occurring after
NMR analyses, compared with the later measures (used in
BiB and UPBEAT) which are at the same time as GDM
diagnoses and later than some of the HDP diagnose; (iii)
the earlier measures explored prediction of GDM as op-
posed to metabolites associations with GDM diagno-
sis, and also before HDP diagnosis; and (iii) earlier
antenatal prediction would enable earlier intervention
to reduce risk and provide targeted treatment.

We examined prediction of spontaneous PTB, defined
as those who had given birth before 37 weeks, with nat-
ural onset of labour (no medical or surgical induction).
As there were only 15 spontaneous PTB in UPBEAT, we
did not seek to replicate the model that was trained and
tested in BiB (n = 260 spontaneous preterm).
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Results

Distributions of age, smoking, parity, HDP and PTB
were broadly similar between the two cohorts. Differ-
ences in ethnicity reflected the sampling frame for each
study. Other notable differences reflected the selection
of only obese women in UPBEAT. They had a higher
mean BMI and higher prevalence of GDM and LGA but
lower prevalence of SGA. The higher prevalence of
GDM also reflects the different diagnostic criteria used
in the two studies. Proportions remained higher in UP-
BEAT when the same criteria used in BiB were applied,
but with a smaller difference between the two studies.

Variables included in the final models for each outcome
and overlap between these

Table 2 shows the number of predictors retained in each
model during model training in BiB. A full list of the
predictors retained in any of the prediction models can
be found in Additional file 1: Tables S2-S4.

Of the total 161 variables included in the combined
risk factor and metabolites model, most (94%) were
retained in the GDM model and least (11%) in the PTB
model. At least 4, of the 5 established risk factors were
retained in the combined risk factor and metabolite
models for all outcomes, including BMI, parity, smoking
and ethnicity. Only for PTB was age not retained. We
found little overlap between predictors retained in the
combined risk factor and metabolite models across out-
comes. Only ten predictors were common across all
combined risk factor and metabolite models (Add-
itional file 1: Table S5). These were BMI, parity, smok-
ing, ethnicity, creatinine, phenylalanine, isoleucine,
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glycine, valine and pyruvate. Very low-density lipopro-
teins (VLDL) (ranging from extra-large to small) were
retained predictors in the prediction models for GDM,
HDP, SGA and LGA. Monounsaturated fatty acids
(MUFA), ratios of MUFA and omega 3 fatty acids to
total fatty acids and a ratio of apolipoprotein B to apoli-
poprotein A-1 (APOA:APOB1) were retained predictors
for GDM and LGA.

Model discrimination and calibration

In BiB, discrimination for GDM, HDP and LGA was
good (Fig. 2, range of AUC for all models across these
three outcomes 0.69 to 0.78) for all models and im-
proved with the addition of metabolites to the risk fac-
tors only model, particularly for GDM (difference in
AUC (95% CI) 0.09 (0.08, 0.10), 0.02 (0.03, 0.01) and
0.04 (0.04, 0.03) respectively for GDM, HDP and LGA).
Modest discrimination for the SGA risk factor-only
model (AUC (95% CI) 0.59 (0.56-0.63)) improved when
metabolites were added (AUC (95% CI) 0.66 (0.63,
0.70)). For PTB, discrimination was poor in all models
(AUC ~0.5).

We evaluated calibration of the models which had per-
formed well: GDM, HDP and LGA in BiB (Figs. 3, 4 and 5).
As the intercepts on the slopes show, calibration is good for
GDM and LGA, but with some overestimation of GDM
and underestimation of LGA compared with the observed
incidence. The combined risk factor and metabolite model
for HDP had the best calibration.

Table 2 Number of predictors retained in each model developed and tested in Born in Bradford from total possible (n (%)).

Percentages are rounded to the nearest whole number

Outcome

Model (retained predictors/total number of variables possible [%])

Gestational diabetes mellitus

Hypertensive disorder of pregnancy

Small for gestational age

Large for gestational age

Preterm birth

Risk factor (5/5 [100%)])
Metabolite (140/156 [90%)])
Combined (152/161 [94%])
Risk factor (4/5 [80%])
Metabolite (50/156 [32%)])
Combined (38/161 [24%])
Risk factor (4/5 [80%))
Metabolite (86/156 [55%])
Combined (101/161 [63%])
Risk factor (4/5 [80%])
Metabolite (65/156 [42%)])
Combined (56/161 [35%])
Risk factor (4/5 [80%])
Metabolite (19/156 [12%)])
Combined (18/161 [11%])
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Fig. 2 The area under the curve (AUC) for all three models with all outcomes in the Born in Bradford (triangles) and the UK Pregnancies Better
Eating and Activity Trial (circles). Predictive discrimination of models for each outcome: AUC and 95% confidence intervals are shown for
established risk factor prediction models (red), metabolite models (green) and combined risk factor and metabolite models (yellow) in BiB
(triangles) and UPBEAT (circles). GDM, gestational diabetes; HDP, hypertensive disorders of pregnancy; SGA, small for gestational age; LGA, large
for gestational age; PTB, preterm birth (iatrogenic or spontaneous) (Additional file 1: Table S6)

Combined Cohort 4 BB ¢ UPBEAT

External validation

External validation in UPBEAT revealed similar pat-
terns of results to those in BiB (Fig. 2). AUC was higher
for the GDM and HDP combined risk factor and me-
tabolite models when compared to the risk factor
models. However, across all models, we saw lower dis-
crimination (AUC lower by ~ 1). For example, the com-
bined risk factor and metabolite model AUC (95% CI)
for GDM was 0.78 (0.74, 0.81) in BiB and 0.62 (0.56,
0.69) in UPBEAT. Equivalent results for HDP were
AUC (95% CI) 0.76 (0.73, 0.79) in BiB and 0.62 (0.55,
0.69) in UPBEAT.

Sensitivity analysis
We did not find that criteria used to diagnose GDM sig-
nificantly impacted upon the results. The combined risk
factor and metabolite model for the UPBEAT GDM
models using the IADSPG criteria was AUC (95% CI) 0.64
(0.60, 0.68). Using the WHO criteria, as in BiB, the com-
bined risk factor and metabolite model discrimination had
an AUC (95% CI) of 0.65 (0.58, 0.71) (Additional file 1:
Table S6).

The strength and direction of the association between
BMI and each outcome were similar in the whole BiB
cohort and the BiB cohort including only obese women;
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associations in UPBEAT were weaker than either BiB
dataset (Additional file 1: Table S7).

To assess the possibility that one predictive model
could predict more than one outcome, we evaluated the
discrimination of models developed for outcomes for
which they were not trained. None of the models per-
formed as well when applied to different outcomes
(Additional file 1: Table S8).

Of the 8212 women in the BiB analysis, 2805 had ‘any’
of GDM, HDP, SGA, LGA or PTB. The risk factor
models had poor discrimination in BiB (AUC (95% CI)
0.60 (0.57, 0.62)) and in UPBEAT (AUC (95% CI) 0.57
(0.53, 0.61)), only slightly improving in the combined
risk factor and metabolite models: BiB (AUC (95% CI)
0.63 (0.60, 0.66)) and in UPBEAT (AUC (95% CI) 0.62
(0.60, 0.66)).

Of the 803 women meeting the HDP diagnostic cri-
teria in BiB, 72 (9%) met these criteria prior to metabol-
ite analyses. We removed these women and reran the
analyses with the remaining 8150 women. The results
did not differ notably when these 72 women were re-
moved from the analyses: AUC (95% CI) of comparing
results with these women removed to the main analyses
were 0.73 (0.69, 0.76) versus 0.76 (0.73, 0.79) for the

combined model, 0.71 (0.68, 0.75) versus 0.71 (0.67,
0.74) for the metabolite model and 0.71 (0.67, 0.75) ver-
sus 0.74 (0.70, 0.78) for the risk factor model.

Performances of models in UPBEAT were similar
when applied to NMR metabolites obtained from the
15-18+6 week samples (Additional file 1: Table S9). The
combined risk factor and metabolite model AUC was
the same for HDP (AUC 0.62) at both time points. The
combined risk factor and metabolite model AUC was
similar for GDM (AUC (95% CI) 0.62 (0.57, 0.66) and
0.65 (0.60, 0.69) at 15 and 27 weeks, respectively), LGA
(AUC (95% CI) 0.52 (0.45, 0.59) and 0.57 (0.51, 0.63)),
SGA (AUC (95% CI) 0.51 (0.43, 0.59) and 0.55 (0.47,
0.62)), and PTB (AUC (95% CI) 0.52 (0.42, 0.62) and
0.54 (0.44, 0.64)). There was a good correlation between
the measures at the two time points (mean correlation
0.68) (Additional file 1: Table S10).

When we trained and tested the models for spontan-
eous PTB in BiB, we obtained a combined risk factor
and metabolite model for spontaneous PTB that had
better discrimination than any (iatrogenic or spontan-
eous) PTB. The combined risk factor and metabolite
model AUC (95% CI) for spontaneous PTB was 0.58
(0.51, 0.65) compared to AUC (95% CI) 0.53 (0.48, 0.59)
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for any PTB. However, the risk factor-only model had
the highest AUC (95% CI) at 0.65 (0.57, 0.72), with the
metabolite-only model performing poorly (AUC (95%
CI) 0.48 (0.42, 0.56)) (Additional file 1: Table S6).

Discussion

Using data from BiB, a large multi-ethnic cohort, we
have shown good discrimination and calibration for
GDM, HDP and LGA can be obtained from a combin-
ation of established risk factors and metabolites. The
overall pattern of discrimination results was validated in
a smaller independent cohort of obese pregnant women,
though the AUCs were weaker. These findings show
promise for the use of NMR-derived metabolites to im-
prove prediction of common pregnancy complications,
though we acknowledge the need to undertake further
validation in a large independent sample of unselected
women. To date, we have not been able to find such a
study.

The proportion of GDM was more than three times
greater in UPBEAT compared with BiB when you used
the IADSPG criteria. The proportion was more similar,
but still higher (10.3% in UPBEAT compared to 8.1% in
BiB) when using the WHO criteria. The lower propor-
tion of those who are SGA and the higher proportion of

those who are LGA in UPBEAT is are also likely to re-
flect the fact that UPBEAT includes only obese women.
The prevalence of HDP and PTB was similar between
the two cohorts.

We found little overlap in the predictors retained in
models for each outcome. Risk factors (maternal age,
pregnancy smoking, BMI, ethnicity and parity) were
retained in the combined risk factor and metabolite
models for all pregnancy-related disorders (aside from
age for PTB), demonstrating their importance in clinical
prediction. Only ten predictors were retained for all
pregnancy-related disorders in the combined risk factor
and metabolite models (BMI, parity, smoking, ethnicity,
creatinine, phenylalanine, isoleucine, glycine, valine and
pyruvate). VLDL (ranging from extra-large to small)
were retained predictors in GDM, HDP, SGA and LGA
combined risk factor and metabolite models. Triglycer-
ides in chylomicrons and extremely large VLDL were
retained in combined risk factor and metabolite models
of HDP, SGA and LGA and cholesterol esters in chylo-
microns, and extremely large VLDL were retained in the
GDM models. MUFA, APOA:APOB1 and a ratio of
MUFA and omega-3 fatty acids to total fatty acids (%)
were retained in the GDM and LGA combined risk fac-
tor and metabolite models. These results suggest that
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lipid monitoring might be important in discriminating
between those at high risk of pregnancy-related disor-
ders. However, it is important to note that the NMR
metabolomic platform, as opposed to other metabolomic
platforms, e.g. like mass spectrometry, is largely made
up of lipoproteins and fatty acids (which are all part of
the lipidome). The lack of overlap between metabolites
retained in the models, and the poor performance of the
‘any’ pregnancy-related disorder model suggests it is un-
likely one metabolite will predict pregnancy complica-
tions, and networks of metabolites are more useful for
the prediction of pregnancy-related disorders.

The overall best discrimination was seen for the com-
bined (established risk factors and metabolite) models
for predicting GDM, HDP and LGA. Discrimination for
GDM with the combined risk factor and metabolite
model (AUC 0.78) was similar to that previously re-
ported for GDM prediction based on clinical informa-
tion, such as previous history of GDM or LGA and
sociodemographic characteristics (AUC ~ 0.78) [43]. The
model performs better than a previously reported model
of risk factor variables (age, previous GDM, family his-
tory of type 2 diabetes, systolic blood pressure, skinfold
thicknesses and waist to height/neck to thigh ratios
(AUC 0.71)). This risk factor model improved when it

included biomarkers such as glucose, adiponectin, sex
hormone-binding globulin and triglycerides were in-
cluded (AUC 0.77), but not with the addition of NMR
metabolites (AUC 0.77) [29]. However, our combined
risk factor and metabolite model has the advantage in
that it can be applied to nulliparous women and does
not rely on personal and family medical history. The
combined risk factor and metabolite models for GDM,
HDP and LGA in our study had good discrimination
and calibration. One aim of this study was to explore the
extent to which a group of potential predictors (metabo-
lites or established risk factors) might predict several
pregnancy outcomes. However, the best performing
models (combined risk factor and metabolite models for
GDM, LGA and HDP) showed only modest discrimin-
ation for other outcomes (AUC ranging from 0.60—-0.68),
with the strongest being for the prediction of LGA using
the GDM combined risk factor and metabolite model
(Additional file 1: Table S8). Overall, these findings for
the NMR metabolite platform suggest that it may not be
possible to develop a single prediction model that is ac-
curate for several adverse pregnancy outcomes.

For HDP and SGA, whilst the combined risk factor and
metabolite models had good discrimination, the metabo-
lites did not substantially improve the discrimination or
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calibration when compared to the established risk factors.
In the interests of maximising the sample, our HDP vari-
able included both gestational hypertension and PE, and
our model discrimination for HDP was weaker than that
reported for the sFlt-1:PIGF ratio for PE alone [24] and
that observed for a model including first antenatal clinical
characteristics and repeat antenatal blood pressure mea-
surements for PE or gestational hypertension alone (AUC
0.77-0.88) [6]. It would be useful to repeat our analyses in
a larger study with sufficient power to explore the predict-
ive ability of metabolites for PE and gestational hyperten-
sion separately.

Previous studies have reported better discrimination
for SGA using metabolite models than reported in this
study. However, sample sizes were small and there was
no external validation or assessment of calibration [25,
26]. We used a < 10% cut-off for SGA, as recommended
by the WHO. Some recommendations advise using a
more conservative < 3% cut-off [28], whilst there is also
evidence that a threshold of 25% better predicts stillbirth
and neonatal mortality [44]. We lacked power in this
study to explore a range of different thresholds for SGA
and LGA and be able to precisely detect differences be-
tween them.

For any PTB (iatrogenic or spontaneous), discrimin-
ation was very poor across all models. When the ana-
lyses were limited to spontaneous PTB, the
discrimination for all models was higher than for the
models with any PTB. However, the AUC remained poor
for the combined (AUC (95% CI) 0.58 (0.51, 0.65)) and
metabolite-alone model (AUC (95% CI) 0.48 (0.41,
0.56)), with modest discrimination for the risk factor
model (AUC (95% CI) 0.65 (0.57, 0.72)). We acknow-
ledge that because of its aetiological presentation, spon-
taneous PTB is likely to be difficult to predict. These
results highlight the need for better models to predict
PTB, or its subtypes, aside from a previous history of
PTB. Our results also suggest that metabolomics quan-
tified with the targeted NMR platform used here are
not useful for predicting iatrogenic or spontaneous
PTB.

The low discrimination observed when predicting ‘any’
pregnancy-related disorder (GDM, HDP, SGA, LGA or
PTB) was unexpected given that similar risk factors are
predictive of each disorder. However, this is consistent
with the poor performance of models trained for one
pregnancy-related disorder but applied to others. It sug-
gests that the biological basis of each disorder is more
complex than indicated by a small number of risk
factors.

We were unable to identify a general population of
pregnant women with relevant data for validation, so we
performed validation in obese pregnant women (UP-
BEAT). In this sample, models demonstrated poorer
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discrimination. It is generally expected that prediction is
poorer in external validation samples [45], but it is also
likely that this has also been influenced by the different
incidences of some outcomes between the two cohorts
and the distinct metabolic perturbations experienced by
obese women during pregnancy [23]. Further studies ex-
ploring the value of metabolomic analysis during preg-
nancy are needed [46].

Strengths and limitations

Previous studies aiming to improve prediction of
pregnancy-related disorders often do not compare per-
formance to established risk factors, assess calibration or
undertake external validation as undertaken here [47—
50]. A strength of this study was the greater number of
women with NMR data in BiB compared to previous
studies of metabolite prediction. The NMR platform has
several strengths in relation to its use for prediction;
measurements are reliable with little variation between
batches, the volume of plasma or serum required for
analyses is small (100-300 puL) and to obtain all mea-
sures is not expensive (~£20) [51]. NMR provides abso-
lute quantification, which represents clinically useful
units. However, the platform quantifies only a small pro-
portion of the metabolome. Other platforms, such as
mass spectrometry, quantify over 1000 metabolites [52].
With greater coverage of the metabolome, it is possible
that we would have improved prediction for the preg-
nancy outcomes explored here. We were limited in this
study by the BiB NMR samples being taken in the sec-
ond trimester (samples taken for the OGTT). This
meant that the GDM cases were diagnosed at the same
time as the metabolite samples, and some of the HDP
cases met the criteria for this diagnosis before metabolite
assessment. When we removed the 72 women who met
the HDP criteria before the metabolite assessment, the
results were very similar to those in our main analysis.
Furthermore, when we performed the validation using
the 15-18 + 6-week gestation data from UPBEAT, the
results were comparable to the second trimester results
in UPBEAT (Additional file 1: Table S9) and metabolites
at 26 weeks correlated with those at 15 weeks (Add-
itional file 1: Table S10). Taken together, these suggest
that the metabolites measured in the second trimester
are good proxies for earlier antenatal measures of the
same metabolites. However, this needs to be directly
tested. Ideally, we would have a prediction tool that
could be used as early as possible in pregnancy. It would
be able to be repeated so that women’s antenatal care
could be tailored to their risk from early pregnancy and
updated with repeat assessment if risk changed. In
addition to UPBEAT including only obese pregnant
women, the cohort differed from BiB in including single-
ton pregnancies only. Multiple pregnancies from BiB
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were not excluded from BiB by design, but after remov-
ing those with missing data, only singleton pregnancies
remained.

Conclusions

To conclude, our results suggest metabolomics com-
bined with established risk factors improve prediction of
GDM, HDP, LGA and SGA, compared to established
risk factors alone. As we were only able to explore valid-
ation in a select cohort of obese women, these findings
should be validated in large, general cohorts of pregnant
women. A predictive test for all or several of these out-
comes would have significant clinical importance and
allow us to identify mothers in need of further resources
and antenatal monitoring. However, we found relatively
little overlap in the models for different outcomes and
poor discrimination for other outcomes for any com-
bined risk factor and metabolite model than the out-
come it had been developed for. By improving the
allocation of resources and stratifying antenatal care
from early pregnancy until delivery, we can reduce the
burden on the healthcare providers and the morbidity
and mortality of mothers and offspring.

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512916-020-01819-z.

Additional file 1: Table S1. A list of the nuclear magnetic resonance
(NMR)-derived metabolomic traits used in this study. Table S2. The
retained predictors for the risk factor prediction models for all pregnancy-
related disorders. Table S3. The retained predictors for the metabolomic
prediction models for all pregnancy-related disorders. Table S4. The
retained predictors for the combined risk factor and metabolomic predic-
tion models for all pregnancy-related disorders. Table S5. The predictors
that were retained in the combined risk factor and metabolite model for
all pregnancy-related disorders. Table S6. The area under the curve and
95% confidence intervals for each prediction model for each pregnancy-
related disorder. Table S7. A sensitivity analysis on the association be-
tween body mass index (BMI) and each pregnancy-related disorder in the
UK Better Eating and Activity Trial (UPBEAT), the Born in Bradford study
and the Born in Bradford study women who had a BMI 230 kg/m2.
Table S8. The area under the curve and 95% confidence intervals for
prediction models trained in one pregnancy-related disorder and tested
for another pregnancy-related disorder. Table $9. The area under the
curve and 95% confidence intervals for prediction models trained in Born
in Bradford and validated at an earlier timepoint in the UK Pregnancies
Better Eating and Activity Trial. Table S10. The correlation between me-
tabolites measured in the UK Pregnancies Better Eating and Activity Trial
at 15-18+6 weeks gestation and 27-28+8 weeks gestation.

Abbreviations

AUC: Area under the curve; BiB: Born in Bradford; BMI: Body mass index;
GDM: Gestational diabetes mellitus; HDP: Hypertensive disorders of
pregnancy; LGA: Large for gestational age; NMR: Nuclear magnetic
resonance; PTB: Preterm birth; SGA: Small for gestational age; UPBEAT: UK
Pregnancies Better Eating and Activity Trial

Acknowledgements
The authors are extremely grateful to all the families who took part in this
study and the teams that make up BiB and UPBEAT, which includes

Page 13 of 15

midwives, interviewers, computer and laboratory technicians, clerical workers,
research scientists, volunteers, managers, receptionists and nurses.

Authors’ contributions

DAL, PY, CR, MS. and N.M. conceived the study. DM, JW, DAL, LP, and
S.LW. performed the data curation. DAL, P.Y, CR, M.S. and N.M. designed
the experiment and analysis. N.M. conducted the analysis. DAL, P.Y, CR,
M.S. and N.M. drafted the original version of the manuscript. DAL, P.Y, CR,
MS., LP, SLW, DF, NS, SN. and JW. provided data interpretation, critical
review, and commentary to the revised versions of the manuscript. All
authors have seen and approved the final versions of this manuscript.

Funding

The work was supported by the National Institute for Health Research (NIHR)
Biomedical Centre at the University Hospitals Bristol NHS Foundation Trust
and the University of Bristol, which funds N.M.s PhD studentship; the US
National Institute of Health (R0OT DK10324); and the European Research
Council under the European Union'’s Seventh Framework Programme (FP7/
2007-2013)/ERC grant agreement no 669545. Core funding for Born in
Bradford (BiB) has been funded by the Wellcome Trust (WT101597MA), a
joint grant from the UK Medical Research Council (MRC) and UK Economic
and Social Science Research Council (ESRC) (MR/N024397/1); the British Heart
Foundation (CS/16/4/32482); and the NIHR under its Collaboration for
Applied Health Research and Care (CLAHRC) for Yorkshire and Humber and
the Clinical Research Network (CRN). This study received funding from the
National Institute of Health Research (RP-PG-0407-10452), Medical Research
Council UK (MR/L002477/1), Chief Scientist Office, Scottish Government
Health Directorates (Edinburgh) (CZB/A/680), Biomedical Research Centre at
Guy's & St Thomas' NHS Foundation Trust & King's College London and the
NIHR Bristol Biomedical Research Centre, Tommys Charity, UK (SC039280).
SLW and LP are supported by Tommys Charity, UK. D.AL, CR, P.Y, M.S. and
N.M. work in a unit that receives support from the MRC (MC_UU_00011/5
and MC_UU_00011/6) and the University of Bristol. The funders did not have
any role in the design, analysis or preparation of the manuscript for
publication. The views expressed in this publication are those of the authors
and not necessarily those of the NHS, the National Institute for Health
Research, the Department of Health and Social Care or any of the funders
listed above.

Availability of data and materials

Data is available upon request from Born in Bradford https://borninbradford.
nhs.uk/research/how-to-access-data/ and the UK Pregnancies Better Eating
and Activity Trial https://www.medscinet.net/upbeat/.

Ethics approval and consent to participate

Ethical approval for the study was granted by the Bradford National Health
Service Research Ethics Committee (ref 06/Q1202/48). UPBEAT is registered
with Current Controlled Trials (ISRCTN89971375), and approvals were
obtained from the UK research ethics committee (ref 09/H0802/5). Local
research and development departments in participating centres approved
the participation of their respective centres. All women in both studies
provided written informed consent.

Consent for publication
Not applicable

Competing interests

DAL has received support from Medtronic Ltd. and Roche Diagnostics for
biomarker research unrelated to those presented in this paper. DAL is on the
editorial board for BMC Medicine.

Author details

'MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
°NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.
3Popula‘[ion Health Sciences, University of Bristol, Bristol, UK. 4Department of
Women and Children’s Health, Faculty of Life Sciences and Medicine, King's
College London, London, UK. “Bradford Institute for Health Research,
Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK.
SCardiovascular and Medical Sciences, British Heart Foundation Glasgow,
Cardiovascular Research Centre, University of Glasgow, Glasgow, UK. “School
of Medicine, University of Glasgow, Glasgow, UK.


https://doi.org/10.1186/s12916-020-01819-z
https://doi.org/10.1186/s12916-020-01819-z
https://borninbradford.nhs.uk/research/how-to-access-data/
https://borninbradford.nhs.uk/research/how-to-access-data/
https://www.medscinet.net/upbeat/

McBride et al. BMC Medicine

(2020) 18:366

Received: 3 July 2020 Accepted: 19 October 2020
Published online: 23 November 2020

References

1.

Farrar D, Santorelli G, Lawlor DA, et al. Blood pressure change across
pregnancy in white British and Pakistani women: analysis of data from the
Born inBradford cohort. Sci Rep. 2019;9(1):13199. Published 2019 Sep 13.
https://doi.org/10.1038/541598-019-49722-9.

Farrar D, Simmonds M, Bryant M, Sheldon TA, Tuffnell D, Golder S, Lawlor
DA. Treatments for gestational diabetes: a systematic review and meta-
analysis. BMJ Open. 2017,7(6):e015557. https://doi.org/10.1136/bmjopen-
2016-015557. PMID: 28647726; PMCID: PMC5734427.

Farrar D, Simmonds M, Bryant M, Lawlor DA, Dunne F, Tuffnell D, Sheldon
TA. Risk factor screening to identify women requiring oral glucose
tolerancetesting to diagnose gestational diabetes: A systematic review and
meta-analysis and analysis of two pregnancy cohorts. PLoS One. 2017;12(4):
€0175288. https://doi.org/10.1371/journal.pone.0175288. PMID: 28384264
PMCID: PMC5383279.

Geelhoed JJM, Fraser A, Tilling K, et al. Preeclampsia and gestational
hypertension are associated with childhood blood pressure, independently
of family adiposity measures: the Avon Longitudinal Study of Parents and
Children. Circulation. 2010;122:1192-9.

Macdonald-Wallis C, Lawlor DA, Fraser A, May M, Nelson SM, Tilling K. Blood
pressure change in normotensive, gestational hypertensive, preeclamptic,
and essential hypertensive pregnancies. Hypertension (Dallas, Tex : 1979).
2012;59:1241-8.

Macdonald-Wallis C, Silverwood RJ, de Stavola BL, et al. Antenatal blood
pressure for prediction of pre-eclampsia, preterm birth, and small for
gestational age babies: development and validation in two general
population cohorts. BMJ. 2015,;351:h5948.

Nelson SM, Lawlor DA. Predicting live birth, preterm delivery, and low birth
weight in infants born from in vitro fertilisation: a prospective study of
144,018 treatment cycles. PLoS Med. 2011;8:1000386.

Mund M, Louwen F, Klingelhoefer D, Gerber A. Smoking and pregnancy--a
review on the first major environmental risk factor of the unborn. Int J
Environ Res Public Health. 2013;10:6485-99.

Frederiksen LE, Ernst A, Brix N, Braskhgj Lauridsen LL, Roos L, Ramlau-
Hansen CH, Ekelund CK. Risk of Adverse Pregnancy Outcomes at
AdvancedMaternal Age. Obstet Gynecol. 2018;131(3):457-63. https://doi.org/
10.1097/A0G.0000000000002504. PMID: 29420406.

Miranda ML, Edwards SE, Myers ER. Adverse birth outcomes among
nulliparous vs. multiparous women. Public health reports (Washington, DC:
1974). 2011;126:797-805.

Bartsch E, Medcalf KE, Park AL, Ray JG. Clinical risk factors for pre-eclampsia
determined in early pregnancy: systematic review and meta-analysis oflarge
cohort studies. BMJ. 2016;353:i1753.

Torloni MR, Betran AP, Horta BL, et al. Prepregnancy BMI and the risk of
gestational diabetes: a systematic review of the literature with meta-
analysis. Obes Rev. 2009;10:194-203.

Farrar D, Simmonds M, Griffin S, Duarte A, Lawlor DA, Sculpher M, Fairley L,
Golder S, Tuffnell D, Bland M, Dunne F, Whitelaw D, Wright J, SheldonTA. The
identification and treatment of women with hyperglycaemia in pregnancy: an
analysis of individual participant data, systematic reviews, metaanalyses and an
economic evaluation. Health Technol Assess. 2016;20(86):1-348. https://doi.org/
10.3310/hta20860. PMID: 27917777; PMCID: PMC5165282.

Salomon LJ, Alfirevic Z, Da Silva CF, et al. ISUOG Practice Guidelines:
ultrasound assessment of fetal biometry and growth. Ultrasound Obstet
Gynecol. 2019;53:715-23.

Boots AB, Sanchez-Ramos L, Bowers DM, Kaunitz AM, Zamora J, Schlattmann P.

The short-term prediction of preterm birth: a systematic review anddiagnostic

metaanalysis. Am J Obstet Gynecol. 2014;210(1):54.e1-54.e10. https.//doi.org/10.

1016/.3j0g.2013.09.004. Epub 2013 Sep 7. PMID: 24021995.

Bartoli E, Fra GP, Schianca GPC. The oral glucose tolerance test (OGTT)
revisited. Eur J Internal Med. 2011;22:8-12.

Milner J, Arezina J. The accuracy of ultrasound estimation of fetal weight in
comparison to birth weight: A systematic review. Ultrasound. 2018;26(1):32-
41. https://doi.org/10.1177/1742271X17732807.

Wirtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T,
Ghorbani A, Artati A, Wang Q, Tiainen M, Kangas AJ, Kettunen J Kaikkonen J,
Mikkild V, Jula A, Kdhonen M, Lehtimaki T, Lawlor DA, Gaunt TR, Hughes AD,
Sattar N, lllig T, Adamski J, Wang TJ, Perola M, Ripatti S, Vasan RS, Raitakari

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Page 14 of 15

OT, Gerszten RE, Casas JP, Chaturvedi N, Ala-Korpela M, Salomaa V.
Metabolite profiling and cardiovascular event risk: a prospective study of 3
population-based cohorts. Circulation. 2015;131(9):774-85. https//doi.org/10.
1161/CIRCULATIONAHA.114.013116. Epub 2015 Jan 8. PMID: 25573147,
PMCID: PMC4351161.

Vieira MC, White SL, Patel N, et al. Prediction of uncomplicated pregnancies in
obese women: a prospective multicentre study. BMC Medicine. 2017;15:194.
Chappell LC, Seed PT, Myers J, et al. Exploration and confirmation of factors
associated with uncomplicated pregnancy in nulliparous women:
prospective cohort study. BMJ (Clinical research ed). 2013;347:f6398-.
Huynh J, Xiong G, Bentley-Lewis R. A systematic review of metabolite
profiling in gestational diabetes mellitus. Diabetologia. 2014;57(12):2453-64.
https://doi.org/10.1007/500125-014-3371-0. Epub 2014 Sep 6. PMID:
25193282; PMCID: PMC4221524.

Wang Q, Wiirtz P, Auro K, Mékinen VP, Kangas AJ, Soininen P, Tiainen M,
Tynkkynen T, Jokelainen J, Santalahti K, Salmi M, Blankenberg S, Zeller
TViikari J, Kdhonen M, Lehtimaki T, Salomaa V, Perola M, Jalkanen S, Jérvelin
MR, Raitakari OT, Kettunen J, Lawlor DA, Ala-Korpela M. Metabolic profiling
of pregnancy: cross-sectional and longitudinal evidence. BMC Med. 2016;
14(1):205. https://doi.org/10.1186/512916-016-0733-0. PMID: 27955712;
PMCID: PMC5153817.

White SL, Pasupathy D, Sattar N, et al. Metabolic profiling of gestational
diabetes in obese women during pregnancy. Diabetologia. 2017;60:1903-12.
https://doi.org/10.1007/500125-017-4380-6.

Agrawal S, Cerdeira AS, Redman C, Vatish M. Meta-Analysis and Systematic
Review to Assess the Role of Soluble FMS-Like Tyrosine Kinase-1
andPlacenta Growth Factor Ratio in Prediction of Preeclampsia: The
SaPPPhirE Study. Hypertension. 2018;71(2):306-16. https://doi.org/10.1161/
HYPERTENSIONAHA.117.10182. Epub 2017 Dec 11. PMID: 29229743.

Sulek K, Han T-L, Villas-Boas SG, et al. Hair metabolomics: identification of
fetal compromise provides proof of concept for biomarker discovery.
Theranostics. 2014;4:953-9.

Horgan RP, Broadhurst DI, Walsh SK, Dunn WB, Brown M, Roberts CT, North
RA, McCowan LM, Kell DB, Baker PN, Kenny LC. Metabolic profilinguncovers
a phenotypic signature of small for gestational age in early pregnancy. J
Proteome Res. 2011;10(8):3660-73. https://doi.org/10.1021/pr2002897. Epub
2011 Jun 29. PMID: 21671558.

Considine EC, Khashan AS, Kenny LC. Screening for preterm birth: potential
for a metabolomics biomarker panel. Metabolites. 2019;9:90.

Leite DFB, Morillon A-C, Melo Junior EF, et al. Examining the predictive
accuracy of metabolomics for small-for-gestational-age babies: a systematic
review. BMJ Open. 2019;9:e031238-e.

White SL, Lawlor DA, Briley AL, et al. Early antenatal prediction of
gestational diabetes in obese women: development of prediction tools for
targeted intervention. PloS one. 2016;11:e0167846-e.

Sovio U, McBride N, Wood AM, Masconi KL, Cook E, Gaccioli F, Charnock-
Jones DS, Lawlor DA, Smith GCS. 4-Hydroxyglutamate is a novel predictor
of pre-eclampsia. Int J Epidemiol. 2020;49(1):301-11. https://doi.org/10.1093/
ije/dyz098. PMID: 31098639; PMCID: PMC7124498.

Sovio U, Goulding N, McBride N, et al. A maternal serum metabolite
ratio predicts fetal growth restriction at term. Nat Med. 2020;26:348-
53.

Wright J, on behalf of the Born in Bradford Scientific Collaborators G, Small
N, et al. Cohort profile: the Born in Bradford multi-ethnic family cohort
study. Int J Epidemiol. 2013;42:978-91.

Mills HL, Patel N, White SL, et al. The effect of a lifestyle intervention in
obese pregnant women on gestational metabolic profiles: findings from
theUK Pregnancies Better Eating and Activity Trial (UPBEAT) randomised
controlled trial. BMC Med. 2019;17:15. https://doi.org/10.1186/512916-018-
1248-7.

Poston L, Bell R, Croker H, et al. Effect of a behavioural intervention in obese
pregnant women (the UPBEAT study): a multicentre, randomised controlled
trial. Lancet Diabetes Endocrinol. 2015;3:767-77.

Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikdinen
LP, Kangas AJ, Soininen P, Wiirtz P, Silander K, Dick DM, Rose RJ,Savolainen
MJ, Viikari J, Kdhénen M, Lehtiméki T, Pietildinen KH, Inouye M, McCarthy MI,
Jula A, Eriksson J, Raitakari OT, Salomaa V, Kaprio J, Jérvelin MR, Peltonen L,
Perola M, Freimer NB, Ala-Korpela M, Palotie A, Ripatti S. Genome-wide
association study identifies multiple loci influencing human serum
metabolite levels. Nat Genet. 2012;44(3):269-76. https://doi.org/10.1038/ng.
1073. PMID: 22286219; PMCID: PMC3605033.


https://doi.org/10.1038/s41598-019-49722-9
https://doi.org/10.1136/bmjopen-2016-015557
https://doi.org/10.1136/bmjopen-2016-015557
https://doi.org/10.1371/journal.pone.0175288
https://doi.org/10.1097/AOG.0000000000002504
https://doi.org/10.1097/AOG.0000000000002504
https://doi.org/10.3310/hta20860
https://doi.org/10.3310/hta20860
https://doi.org/10.1016/j.ajog.2013.09.004
https://doi.org/10.1016/j.ajog.2013.09.004
https://doi.org/10.1177/1742271X17732807
https://doi.org/10.1161/CIRCULATIONAHA.114.013116
https://doi.org/10.1161/CIRCULATIONAHA.114.013116
https://doi.org/10.1007/s00125-014-3371-0
https://doi.org/10.1186/s12916-016-0733-0
https://doi.org/10.1007/s00125-017-4380-6
https://doi.org/10.1161/HYPERTENSIONAHA.117.10182
https://doi.org/10.1161/HYPERTENSIONAHA.117.10182
https://doi.org/10.1021/pr2002897
https://doi.org/10.1093/ije/dyz098
https://doi.org/10.1093/ije/dyz098
https://doi.org/10.1186/s12916-018-1248-7
https://doi.org/10.1186/s12916-018-1248-7
https://doi.org/10.1038/ng.1073
https://doi.org/10.1038/ng.1073

McBride et al. BMC Medicine

36.

37.

38.

39.

40.

41,

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

(2020) 18:366

Wurtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M.
Quantitative serum NMR metabolomics in large-scale epidemiology: a
primer on -omic technology. Am J Epidemiol. 2017;186.

International Association of Diabetes and Pregnancy Study Groups
Recommendations on the Diagnosis and Classification of Hyperglycemia in
Pregnancy. Diabetes Care. 2010;33:676-82.

Kuhn M. Building predictive models in R using the caret package. 2008
2008; 28: 26.

Kohavi R. A study of cross-validation and bootstrap for accuracy estimation
and model selection. ljcai; 1995: Montreal, Canada; 1995. p. 1137-45.
Musoro JZ, Zwinderman AH, Puhan MA, ter Riet G, Geskus RB. Validation of
prediction models based on lasso regression with multiply imputed data.
BMC Med Res Methodol. 2014;14:116.

Friedman JH, Hastie T, Tibshirani R. Regularization paths for generalized
linear models via coordinate descent. 2010 2010; 33: 22.

Palmer PB, O'Connell DG. Regression analysis for prediction: understanding
the process. Cardiopulmonary Physical Therapy J. 2009,20:23-6.

van Leeuwen M, Opmeer BC, Zweers EJK, et al. Estimating the risk of
gestational diabetes mellitus: a clinical prediction model based on patient
characteristics and medical history. BJOG Int J Obstet Gynaecol. 2010;117:
69-75.

lliodromiti S, Mackay DF, Smith GCS, et al. Customised and noncustomised
birth weight centiles and prediction of stillbirth and infant mortality and
morbidity: a cohort study of 979,912 term singleton pregnancies in
Scotland. PLoS Med. 2017;14:21002228.

Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II.
External validation, model updating, and impact assessment. Heart. 2012;98:
691-8.

Souza RT, Cecatti JG, Costa ML, et al. Planning, implementing, and running
a multicentre preterm birth study with biobank resources in Brazil: the
Preterm SAMBA Study. Biomed Research International. 2019;2019:5476350.
De Kat AC, Hirst J, Woodward M, Kennedy S, Peters SA. Prediction models
for preeclampsia: A systematic review. Pregnancy Hypertens. 2019;16:48-66.
https://doi.org/10.1016/j.preghy.2019.03.005. Epub 2019 Mar 11. PMID:
31056160.

Kleinrouweler CE, Wiegerinck MM, Ris-Stalpers C, Bossuyt PM, van der Post
JA, von Dadelszen P, Mol BW, Pajkrt E; EBM CONNECT Collaboration.
Accuracy of circulating placental growth factor, vascular endothelial growth
factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the
prediction of pre-eclampsia: a systematic review and meta-analysis. BJOG.
2012;119(7):778-87. https://doi.org/10.1111/j.1471-05282012.03311.x. Epub
2012 Mar 20. PMID: 22433027.

Sotiriadis A, Papatheodorou S, Kavvadias A, Makrydimas G. Transvaginal
cervical length measurement for prediction of preterm birth in women
withthreatened preterm labor: a meta-analysis. Ultrasound Obstet Gynecol.
2010;35(1):54-64. https://doi.org/10.1002/u0g.7457. PMID: 20014326.
Cooray SD, Boyle JA, Soldatos G, Wijeyaratne LA, Teede HJ. Prognostic
prediction models for pregnancy complications in women with gestational
diabetes: a protocol for systematic review, critical appraisal and meta-
analysis. Systematic Reviews. 2019;8:270.

Ala-Korpela M. Serum Nuclear Magnetic Resonance Spectroscopy: One
More Step toward Clinical Utility. Clin Chem. 2015;61(5):681-3. https://doi.
0rg/10.1373/clinchem.2015.238279. Epub 2015 Mar 10. PMID: 25759464.
Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based
metabolomics. Mass Spectrom Rev. 2007;26(1):51-78. https://doi.org/10.
1002/mas.20108. PMID: 16921475, PMCID: PMC1904337.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 15 of 15

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1016/j.preghy.2019.03.005
https://doi.org/10.1111/j.1471-0528.2012.03311.x
https://doi.org/10.1002/uog.7457
https://doi.org/10.1373/clinchem.2015.238279
https://doi.org/10.1373/clinchem.2015.238279
https://doi.org/10.1002/mas.20108
https://doi.org/10.1002/mas.20108

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Participants
	Metabolomic profiling
	Maternal pregnancy measurements
	Statistical analysis


	Results
	Variables included in the final models for each outcome and overlap between these
	Model discrimination and calibration
	External validation
	Sensitivity analysis

	Discussion
	Strengths and limitations

	Conclusions
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

